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Доказательство теоремы Пюизо для некоторого класса 
алгебраических уравнений

Бузурный М.И.

Исаак Ньютон в письме к Ольденбургу изложил идею алгоритма
поиска решения алгебраического уравнения 𝐹 (𝑧, 𝑤) = 0 в виде ряда с
дробным показателем степени переменной 𝑧. Сейчас он носит название
метода диаграммы Ньютона. В последствии Виктором Пюизо был доказан
тот факт, что получаемые методом диаграммы Ньютона решения сходятся
в некоторой окрестности нуля. Этот факт носит название теоремы Пюизо.

Следующим этапом развития интереса к этому вопросу стали работы,
использующие техники, эквивалентные разрешению особенностей алгебраических
кривых в современной терминологии.

Теорему Пьюизо можно также получить из иных соображений, например,
из разложения многочлена 𝐹 (𝑧, 𝑤) в произведение неприводимых многочленов
Вейерштрасса относительно переменной z. Рассматривая отдельно каждый
неприводимый многочлен, можно построить локальную параметризацию
определяемой им ветви кривой. Каждое из формальных решений уравнения
𝐹 (𝑧, 𝑤) = 0 совпадает с одной из полученных параметризаций, и тем
самым является сходящимся.

Для некоторых классов уравнений доказательство теоремы Пьюизо
может быть получено без использования рассмотренных выше конструкций.
В настоящей работе приводится один такой класс уравнений, у которых
коэффициенты - сходящиеся ряды Пьюизо. Показывается, что все сходящиеся
решения можно получить сразу же по диаграмме Ньютона исходного
уравнения, и, в частности, опустить промежуточные разрешения особенностей.

Определение 1. Рядом Пьюизо с одной переменной называется формальное
алгебраическое выражение вида

𝑓(𝑧) =
+∞∑︁
𝑛=𝑛0

𝑎𝑛𝑧
𝑛
𝑚 ,

где 𝑛0− целое, 𝑚−натуральное (при 𝑚 = 1 получается ряд Лорана),
коэффициенты 𝑎𝑛 берутся из некоторого кольца 𝑅.

Определение 2. Диаграммой Ньютона 𝑁(𝐹 ) уравнения (1) называется
множество компактных граней неограниченного полиэдра c.h.(∪𝑃𝛽), где
𝑃𝛽 = {(𝛽, 𝑠) : 𝑠 ≥ 𝛼}, c.h.- convex hull (выпуклая оболочка).
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Сформулируем основной результат настоящей работы.

Теорема 1. Пусть уравнение 𝐹 (𝑧, 𝑤) = 0 таково, что каждое
ребро его диаграммы Ньютона не содержит целых точек, отличных от
вершинных. Тогда каждое его решение, получаемое с помощью алгоритма
Ньютона, является сходящимся рядом Пьюизо.

Доказательство теоремы опирается на ряд вспомогательных утверждений.
Отсюда с помощью теоремы о вычетах получается

Теорема 2. (о логарифмическом вычете) Пусть 𝐺 ⊂ C−ограниченная
область с кусочно-гладкой границей и 𝑓 ∈ O(𝐺̄) имеет в 𝐺̄ конечное
число нулей 𝑎𝑗 ∈ 𝐺 кратностей 𝜇𝑗. Тогда для любой 𝜙 ∈ O(𝐺̄)

1

2𝜋𝑖

∫︁
𝜕𝐺

𝜙
𝑑𝑓

𝑓
=

∑︁
𝑗

𝜇𝑗𝜙(𝑎𝑗).

Теорема 3. (А.П. Южаков) Уравнение Φ(𝜁, 𝑧) = 0 имеет голоморфное
в окрестности 𝜁 = 0 решение (ветвь) вида

𝑧 = 𝑧(𝜁) =
∑︁
𝑘≥2

𝑐𝑘𝜁
𝑘.

Проиллюстрируем на примере, когда теорема 1 быстрее приводит
к цели, чем техника разрешения особенностей алгебраических кривых.

Рассмотрим уравнение вида

𝐺(𝑧, 𝑤) = 𝑎𝑧𝛼𝑤𝛽 +
∑︁

𝑖+𝑗>𝛼+𝛽

𝑎𝑖𝑗𝑧
𝑖𝑤𝑗 = 0

и удовлетворяющее условиям теоремы 1. Данная функция имеет особую
точку (0, 0) порядка 𝛼 + 𝛽. После подстановки 𝑧 = 𝑢,𝑤 = 𝑣𝑢 получим:

𝑢𝛼+𝛽(𝑎𝑣𝛽 +
∑︁
𝑖+𝑗>𝑑

𝑢𝑖+𝑗−(𝛼+𝛽)𝑣𝑗) = 𝑢𝛼+𝛽 ̃︀𝐺(𝑢, 𝑣) = 0,

откуда видно, что точка (0, 0) остаётся особой и для функции ̃︀𝐺(𝑢, 𝑣).
Связано это с тем, что касательный конус в точке (0, 0) для кривой
𝐺(𝑧, 𝑤) имел кратные компоненты (компоненту 𝑧 = 0 кратности 𝛼 и
компоненту 𝑤 = 0 кратности 𝛽). По конструкции разрешения необходимо
продолжать раздутие особой точки, т.е. требуется как минимум больше
одного шага. Вместе с тем, использование теоремы 1 сразу позволяет
получить сходящееся решение.
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Цилиндричность трехмерных многообразий Фано
рода 9 и 10

Вирин Н. А.

Все рассматриваемые многообразия считаем определенными над полем комплексных
чисел C. Цилиндром называется алгебраическое многообразие U , которое изоморфно
Z×A1, где Z – некоторое квазипроективное многообразие. Многообразие X называется
цилиндрическим, если оно содержит открытое по Зарискому множество U , являющееся
цилиндром. Обзор о цилиндрах в многообразиях Фано можно найти в работе [2].

Интерес к цилиндрическим многообразиям произошел из аффинной геометрии. Пусть
многообразие X проективно и X ↪→ PN – его проективное вложение. В работе [4] рас-
смотрен следующий естественный вопрос: когда аффинный конус AffCone(X) ⊂ AN+1

над X допускает эффективное действие аддитивной группы Ga. 1 Один из возможных
критериев имеет следующий вид:

Теорема 0.1 ([5, Corollary 0.4]). Пусть X ⊂ PN – гладкое проективное многообразие
с Pic(X) = Z. Тогда AffCone(X) допускает эффективное Ga-действие тогда и только
тогда, когда X цилиндрично.

Замечание 0.2. Существует аналогичный критерий для многообразий с произвольной
группой Пикара (см. [5, Theorem 0.3]).

Цилиндрическое многообразие унилинейчато, следовательно, его кодаирова размер-
ность отрицательна (см. [6, Corollary IV.1.11]). Поэтому гладкие цилиндрические мно-
гообразия с rkPic(X) = 1 являются многообразиями Фано.

Известно, что трехмерные цилиндрические многообразия Фано рациональны (см.
[5]). При этом неизвестны примеры гладких рациональных многообразий Фано, которые
не являются цилиндрическими.

Напомним, что родом трехмерного многообразия Фано с Pic(X) = Z[−KX ] называ-
ется число

g := 1− K3
X

2
.

Это число принимает целые значения, 2 ⩽ g ⩽ 12 и g ̸= 11.
Пусть X – гладкое трехмерное многообразие Фано рода g с

Pic(X) = Z[−KX ].

Тогда про рациональность и цилиндричность таких многообразий известно следующее:
1Если аффинный конус AffCone(X) допускает такое действие и dim(X) ⩾ 1, то группа

Aut(AffCone(X)) автоморфизмов бесконечномерна (см. [1]).
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1. Если g ∈ {2, 3, 4, 5, 6, 8}, то общее многообразие X не является рациональным и, в
частности, не является цилиндрическим. Более точно:

• Если g ∈ {2, 3, 5, 8}, то любое многообразие X не является рациональным.
• Если g ∈ {4, 6}, тогда общее многообразие X не является рациональным.

2. Если g ∈ {7, 9, 10, 12}, то любое многообразие X рационально.

3. Если g = 12, то любое многообразие X является цилиндрическим (см. [3, Proposition
5.2]).

В классе трехмерных многообразий Фано с Pic(X) = Z[−KX ] открыт вопрос о ци-
линдричности многообразий рода 7, 9 и 10. Ранее было известно, что среди трехмерных
многообразий Фано с Pic(X) = Z[−KX ] родов 9 и 10 есть цилиндрические. А именно, в
работе [5] доказана следующая теорема:

Теорема 0.3 ([5, Theorem 0.1]). Пусть X – трехмерное многообразие Фано рода g = 9
или g = 10 с Pic(X) = Z[−KX ] и особой схемой Гильберта прямых F1(X). Тогда X
цилиндрично. Такие многообразия Фано образуют подмногообразие коразмерности один
в соответствующем пространстве модулей.

Мы утверждаем, что все многообразия Фано рода g = 9 или g = 10 с Pic(X) =
Z[−KX ] являются цилиндрическими. А именно, доказывается следующая теорема:

Теорема 0.4. Пусть X – трехмерное многообразие Фано рода 9 или 10 с Pic(X) =
Z[−KX ]. Тогда X является цилиндрическим.
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Операторы Роты-Бакстера на йордановой алгебре 𝐻
(+)
4

Я. Гостюхин

Как известно, обобщением понятия дифференцирования на произвольной алгебре

𝐴 является линейный оператор 𝑑, удовлетворяющий тождеству Лейбница 𝑑(𝑥𝑦) =

𝑑(𝑥)𝑦+𝑥𝑑(𝑦) для всех 𝑥, 𝑦 ∈ 𝐴. Можно ли ввести подобный оператор, но для понятия

интегрирования? Ответом на этот вопрос является понятие оператора Роты-Бакстера

на произвольной алгебре.

Определение 1. Пусть 𝐴 — алгебра над полем k. Линейный оператор 𝑅 назы-

вается оператором Роты-Бакстера (РБ-оператор) веса 𝜆 ∈ k, если он удовлетворяет

соотношению

𝑅(𝑥)𝑅(𝑦) = 𝑅(𝑅(𝑥)𝑦 + 𝑥𝑅(𝑦) + 𝜆𝑥𝑦)

для всех 𝑥, 𝑦 ∈ 𝐴.

Нетрудно заметитить, что оператор интегрирования является РБ-оператором веса

𝜆 = 0. РБ-операторы имеют множество приложений в различных областях матема-

тики, таких как теория чисел, математическая физика и теория операдов. Также

была выявлена глубокая связь с классическим уравнением Янга-Бакстера.

Одним из направлений для изучения РБ-операторов является их описание на кон-

кретной алгебре. Для этого рассмотрим такую задачу: пусть задана ассоциативная

алгебру 𝐴 над полем 𝑐ℎ𝑎𝑟(k) ̸= 2, по которой можно построить алгебры 𝐴(+) и 𝐴(−),

заменив операцию умножения на 𝑎 ∘ 𝑏 = 1
2
(𝑎𝑏+ 𝑏𝑎) и [𝑎, 𝑏] = 𝑎𝑏− 𝑏𝑎 соответственно.

Алгебра 𝐴(+) будет является йордановой алгеброй, алгебра 𝐴(−) — лиевой. Нетруд-

но проверить, что если 𝑅 — РБ-оператор на ассоциативной алгебре, то 𝑅 также

РБ-оператор на алгебрах 𝐴(+) и 𝐴(−). Возникает вопрос — какие РБ-операторы на

присоедененных алгебрах не приходят из ассоциативной алгебры. Для исследования

этого вопроса я рассмотрел четырехмерную алгебру Хопфа 𝐻4 над полем характери-

стики ̸= 2. Как алгебра она порождается элементами 1, 𝑔, 𝑥, 𝑔𝑥 с таблицей умножения:

𝑥2 = 0, 𝑔2 = 1, 𝑔𝑥 = −𝑥𝑔.

Далее строим алгебра𝐻
(+)
4 по вышеуказанной схеме. Для описания РБ-операторов

нам понадобится описать 𝐴𝑢𝑡(𝐻
(+)
4 ), дать список всех подалгебры с точностью до

действия автоморфизмов. После этого пользуемся утверждением о том, что ядро

любого РБ-оператора ненулевого веса и образ любого РБ-оператора нулевого веса

является подалгебрами. В моей работе я исследовал решения системы квадрик над

произвольным полем характеристики ̸= 2. В общем случае можно воспользоваться

базисами Гребнера-Ширшова, однако я делал это вручную. Представим основной

результат.

Теорема 2. Все РБ-операторы ненулевого веса на алгебре 𝐻
(+)
4 с точностью до

сопряжения автоморфизмами исчерпывается списком:

(1) 𝑅(1) = 𝑅(𝑥) = 𝑅(𝑔𝑥) = 0, 𝑅(𝑔) = ±1− 𝑔;

(2) 𝑅(1) = 𝑅(𝑔) = 𝑅(𝑥) = 0, 𝑅(𝑔𝑥) = 𝑝1(1− 𝑔)− 𝑔𝑥;

(3) 𝑅(𝑥) = 𝑅(𝑔𝑥) = 0, 𝑅(1) = 𝑅(𝑔) = −1;

(4) 𝑅(𝑥) = 𝑅(𝑔𝑥) = 0, 𝑅(1) = 𝑅(𝑔) = ± 1
2
1− 1

2
𝑔;

(5) 𝑅(𝑥) = 𝑅(𝑔𝑥) = 0, 𝑅(1) = −1, 𝑅(𝑔) = 1;

(6) 𝑅(𝑥) = 𝑅(𝑔𝑥) = 0, 𝑅(1) = −1, 𝑅(𝑔) = −𝑔;
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(7) 𝑅(𝑥) = 𝑅(𝑔𝑥) = 0, 𝑅(1) = − 3
2
1 +∓ 1

2
𝑔, 𝑅(𝑔) = ± 1

2
1− 1

2
𝑔

(8) 𝑅(1) = 𝑅(𝑔) = 0, 𝑅(𝑥) = 𝑝1(1± 𝑔)− 𝑥, 𝑅(𝑔𝑥) = 𝑝2(1± 𝑔)− 𝑔𝑥;

(9) 𝑅(𝑥) = 0, 𝑅(1) = 𝑅(𝑔) = −1, 𝑅(𝑔𝑥) = 𝑝1(1− 𝑔)− 𝑔𝑥;

(10) 𝑅(1) = 𝑅(𝑥) = 0, 𝑅(𝑔) = ±1− 𝑔 + 𝑝1𝑥, 𝑅(𝑔𝑥) = 𝑝2𝑥− 𝑔𝑥;

(11) 𝑅(1) = 0, 𝑅(𝑔) = ±1− 𝑔, 𝑅(𝑥) = −𝑥, 𝑅(𝑔𝑥) = −𝑔𝑥;

(12) 𝑅(𝑥) = 0, 𝑅(1) = − 3
2
1± 1

2
𝑔 ∓ (𝑝1 + 2𝑝2𝑝3)𝑥± 𝑝2𝑔𝑥,

𝑅(𝑔) = ∓ 1
2
1− 1

2
𝑔 + 𝑝1𝑥+ 𝑝2𝑔𝑥, 𝑅(𝑔𝑥) = 𝑝3𝑥− 𝑔𝑥;

(13) 𝑅(1) = 𝑅(𝑔) = −1, 𝑅(𝑥) = −𝑥, 𝑅(𝑔𝑥) = −𝑔𝑥;

(14) 𝑅(1) = 𝑅(𝑔) = ± 1
2
1− 1

2
𝑔, 𝑅(𝑥) = −𝑥, 𝑅(𝑔𝑥) = −𝑔𝑥;

(15) 𝑅(1) = −1, 𝑅(𝑔) = −𝑔, 𝑅(𝑥) = −𝑥, 𝑅(𝑔𝑥) = −𝑔𝑥;

Теорема 3. Все РБ-операторы нулевого веса на 𝐻
(+)
4 с точностью до споряжения

автоморфизмами описываются списком:

(1) 𝑅(𝑥) = 0, 𝑅(1) = 𝑝1𝑥, 𝑅(𝑔) = 𝑝2𝑥, 𝑅(𝑔𝑥) = 𝑝3𝑥;

(2) 𝑅(1) = 𝑅(𝑔) = 0, 𝑅(𝑥) = 𝑝1(1− 𝑔), 𝑅(𝑔𝑥) = 𝑝2(1− 𝑔);

(3) 𝑅(𝑥) = 𝑅(𝑔𝑥) = 0, 𝑅(1) = 𝑝1𝑥+ 𝑝2𝑔𝑥, 𝑅(𝑔) = 𝑝3𝑥+ 𝑝4𝑔𝑥;

(4) 𝑅(1) = 𝑝1𝑥− 𝑝1𝑝2𝑝
−1
3 𝑔𝑥, 𝑅(𝑔) = 𝑝4𝑥− 𝑝4𝑝2𝑝

−1
3 𝑔𝑥,

𝑅(𝑥) = 𝑝2𝑥− 𝑝22𝑝
−1
3 𝑔𝑥, 𝑅(𝑔𝑥) = 𝑝3𝑥− 𝑝2𝑔𝑥;

(5) 𝑅(1) = 𝑅(𝑔𝑥) = 0, 𝑅(𝑔) = −𝑝1(1− 𝑔) + 𝑥, 𝑅(𝑥) = 𝑝21(1− 𝑔) + 𝑝1𝑥;

(6) 𝑅(1) = 0, 𝑅(𝑔) = −𝑝1(1− 𝑔) + 𝑥, 𝑅(𝑥) = 𝑝21(1− 𝑔) + 𝑝1𝑥,

𝑅(𝑔𝑥) = 𝑝22(1− 𝑔)− 𝑝1𝑥.
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Аналог теории Морса в алгебраической геометрии

Роман Елисеев

Часть I: Классическая теория Морса
Основная идея теории Морса заключается в
анализе топологии гладкого многообразия M
путем изучения гладких вещественнозначных
функций f : M → R. Эти функции
рассматриваются как «функции высоты» на
многообразии.
Критическая точка функции f — это точка
p ∈ M , в которой ее дифференциал dfp
обращается в ноль. Точка p называется
невырожденной, если матрица вторых частных
производных (гессиан) Hf (p) в этой точке
невырождена.
Функция Морса — это гладкая функция, все
критические точки которой невырождены.
Ключевой результат состоит в том, что функции
Морса являются «типичными»: они образуют
открытое плотное подмножество в пространстве
всех гладких функций на M .
Лемма Морса утверждает, что в окрестности
невырожденной критической точки p существуют
локальные координаты (x1, . . . , xn) такие, что
функция f имеет канонический вид:

f (x) = f (p) − x 2
1 − · · · − x 2

k + x 2
k+1 + · · · + x 2

n

Число k , равное количеству отрицательных
квадратов, называется индексом Морса точки p и
обозначается ind(p). Индекс инвариантен и
соответствует числу независимых направлений, в
которых функция f убывает.
Топология подмногообразия уровня
Ma = f −1((−∞, a]) изменяется только тогда,
когда a проходит через критическое значение
f (p). Это изменение топологически эквивалентно
приклеиванию k-ручки (Dk × Dn−k), где
k = ind(p).
Этот процесс дает разложение на ручки
многообразия M , которая определяет на нем
структуру CW-комплекса.
Неравенства Морса связывают количество
критических точек ck индекса k с числами Бетти
bk(M) = rank(Hk(M ,Z)).
▶ Слабые: ck ≥ bk.
▶ Сильные: ∑k

i=0(−1)k−ici ≥ ∑k
i=0(−1)k−ibi .

▶ Эйлерова хар-ка:
χ(M) = ∑n

k=0(−1)kck = ∑n
k=0(−1)kbk.

Функция Морса называется совершенной, если
ck = bk для всех k .

Часть II: Теорема Бьялыницки-Бируля
В алгебраической геометрии аналогом
однопараметрической группы преобразований является
действие мультипликативной группы Gm = k∗ на
гладком проективном многообразии X .
Множество неподвижных точек XGm состоит из точек
p ∈ X , инвариантных относительно действия Gm. Эти
точки являются алгебраическим аналогом критических
точек функции Морса. Обозначим через F1, . . . , Fr
связные компоненты XGm.
Для каждой компоненты Fi определяются два
подмножества в X :
▶ Плюс-клетка (притягивающее множество):

X +
i = {x ∈ X | lim

t→0
t · x ∈ Fi}

▶ Минус-клетка (отталкивающее множество):
X −

i = {x ∈ X | limt→∞ t · x ∈ Fi}
Эти множества (ячейки Бьялыницки-Бируля) являются
локально замкнутыми и образуют два разложения
многообразия X на непересекающиеся подмногообразия:

X = r⊔
i=1

X +
i и X = r⊔

i=1
X −

i

Теорема Бьялыницки-Бируля (1973) утверждает, что
для гладкого проективного многообразия X с действием
Gm предельные отображения π±

i : X ±
i → Fi являются

морфизмами, которые наделяют каждую ячейку X ±
i

структурой расслоения на аффинные пространства над
базой Fi .
Теорема Бьялыницки-Бируля имеет важное следствие.
Если X — гладкое комплексное проективное
многообразие, его группы гомологий можно вычислить
через гомологии компонент неподвижных точек:

Hm(X ,Z) ∼= r⊕
i=1

Hm−2d+
i (Fi ,Z)

где d+
i = dimC(слоя X +

i → Fi).

Часть III: Соответствие между теориями
Теория Морса Теория Бьялыницки-

Бируля
Гладкое многообразие M Гладкое проективное мно-

гообразие X
Функция Морса f : M →
R

Действие Gm : Gm × X →
X

Критические точки f Неподвижные точки XGm

Устойчивое мн-во W s(p) Плюс-клетка X +
p

Неустойчивое мн-во W u(p) Минус-клетка X −
p

Индекс Морса k =
dimR(W u(p))

Компл. размерность слоя
минус-клетки

Собств. значения гессиана Веса действия Gm на TpX
Число отриц. собств. значе-
ний

Число отрицательных ве-
сов

Приклеивание ручки Расслоение на аффинные
пространства

Часть IV: Приложения и вычисления
Теория Морса на S2: Рассмотрим функцию
высоты f (x , y , z) = z на S2 ⊂ R3.
▶ Крит. точки: Южный полюс pS и Северный

полюс pN .
▶ Индексы: ind(pS) = 0, ind(pN) = 2.
▶ Декомпозиция: Приклеивается 0-ручка, затем

2-ручка.
▶ Вычисление: c0 = 1, c1 = 0, c2 = 1. Из

χ(S2) = 2 и b0 = b2 = 1 следует b1 = 0.
Числа Бетти: (1, 0, 1).

Теорема Бьялыницки-Бируля на P1: Рассмотрим
действие t · [z0 : z1] = [tz0 : z1] на P1 ∼= C∪ {∞}.
▶ Неподв. точки: p0 = [0 : 1] и p∞ = [1 : 0].
▶ Веса в TpP1: В p0 вес +1, в p∞ вес −1.
▶ Индексы: ind(p0) = 0, ind(p∞) = 1.
▶ Декомпозиция: X −

p∞
∼= A1, X −

p0 = {p0}.
P1 ∼= A1 ∪ A0.

▶ Вычисление гомологий:
H∗(P1) ∼= H∗−2({p∞}) ⊕ H∗({p0}). Это дает
H0(P1) ∼= Z и H2(P1) ∼= Z. Числа Бетти:
(1, 0, 1).

pN ∼ p∞

Рис.: Поток на S2 (аналог P1).

Основная литература:
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3. Chriss, N., & Ginzburg, V. (2010).
Representation Theory and Complex Geometry.
Birkhäuser.

4. Drinfeld, V. (2013). On algebraic spaces with an
action of Gm. arXiv:1308.2604.



Гипотеза Чилиберто – Ди Дженнаро для
гиперповерхностей степени 6

Квитко Ксения Васильевна 1

1НИУ ВШЭ, Москва

Основные понятия

Алгебраическое многообразие X называется факториальным, если группа
Пикара Pic(X) совпадает с группой классов Cl(X).
Пусть X – гиперповерхность {F = 0} в Proj C[x0, . . . , x4].
Будем говорить, что X – нодальная, если она имеет особенности не хуже
обыкновенных двойных точек (нодов). Тогда факториальность X (или
эквивалентно, Q-факториальность) равносильна факториальность кольца
C[x0, . . . , x4]/(F ).

Гипотеза Чилиберто – Ди Дженнаро

Пусть X ⊂ P4 – нодальная гиперповерхность степени d ⩾ 3, имеющая
не более 2(d− 2)(d− 1) особых точек. Тогда

либо она факториальна,

либо она содержит плоскость и имеет (d− 1)2 нодов,

либо она содержит квадратичную гиперповерхность и имеет
2(d− 2)(d− 1) нодов.

Известные результаты

Гипотеза верна для кубических гиперповерхностей (Finkelnberg и
Werner 1989).

Гипотеза верна в случае квартик (Cheltsov 2006, Shramov 2007).

Гипотеза верна в случае гиперповерхностей степени d ⩾ 7
(Kloosterman 2022).

Связь с алгеброй: дефект гиперповерхности

Дефектом X ⊂ P4 называют число h4(X) − h2(X), т.е. ранг группы
Cl(X)/Pic(X). И обозначают как δ(X).
Пусть J – идеал нодов. Тогда существует связь между функцией Гиль-
берта идеала J и дефектом δ(X) (Dimca 1990):

δ(X) = #Sing(X)− hJ(2d− 5). (1)

Артиновы горенштейновы кольца

Пусть H = {x4 = 0} – гиперплоское сечение, не проходящее через ноды.
Тогда имеет место точная последовательность

0 → (R/J)k−1
·x4−−→ (R/J)k → (S/JH)k → 0, (2)

где R = C[x0, . . . , x4], S = R/(x4) ≃ C[x0, x1, x2, x3], JH – образ J в S, и
верно

hJH
(2d− 4) > 0.

Выберем в S2d−4 подространство W коразмерности 1, содержащее (JH)2d−4,
и положим

Ie =

{
{f ∈ S | fS2d−4−e ⊂ W} e ⩽ 2d− 4,

Se e > 2d− 4,

Тогда функция Гильберта идеала I ⊇ JH симметрична

hI(2d− 4− e) = hI(e),

а (локальное) артиново факторкольцо S/I – горенштейново.
Цоколь Soc(S/I) – аннулятор максимального идеала, является одномерным
как векторное пространство.
Цокольная степень – степень многочлена, порождающего Soc(S/I).

Подход Клустермана

Доказательсво гипотезы для d ⩾ 7 с помощью формулы (1) сводится к
изучению свойств функций Гильберта кольца S/I, построенного в
предыдущем разделе, и опирается на следующие леммы.

Лемма 1

Пусть d ⩾ 6. Если hI(d − 4) ⩽ 2d − 7, то Sing(X) содержит полное
пересечение мультистепени (1, 1, d− 1, d− 1) либо (1, 2, d− 2, d− 1).

Лемма 2

Пусть d ⩾ 7. Если hI(d−4) > 2d−7, то #Sing(X) ⩾ 2(d−2)(d−1)+1.

Набросок доказательства гипотезы. Если X = {F = 0} не
факториальна, то идеал нодов J содержится в некотором идеале полного
пересечения ICI = (f1, . . . , f4) по Лемме 1. Тогда F ∈ (f1, . . . , f4). Так как
{f1 = · · · = f4 = 0} ⊂ Sing(X) – ноды, совокупность {f1, . . . , f4} образует
локальную систему координат. Тогда hi ∈ ICI . С учётом равенства degF = d
заключаем, что все hi ∈ (f1, f2). А значит, X содержит {f1 = f2 = 0} –
либо плоскость, либо квадрику (в зависимости от мультистепени ICI).

Гиперповерхности степени 6

Покажем, что утверждение Леммы 2 выполнено и для d = 6. Используем
оценки Клустермана из таблицы.

k 0 1 2 m d− 4 d− 3 d− 2
hI(k) 1 ⩾ 3 ⩾ 6 ⩾ 2m+ 2 ⩾ 2d− 6 ⩾ 2d− 6 ⩾ 2d− 6

Таблица 1. Оценки на значения функции Гильберта идеала I.

Из формулы (1) получаем #Sing(X) ⩾ hJ(2d− 4). Из точной
последовательности (2) и по построению идеала I

hJ(2d− 5) =
2d−4∑
k=0

hJH
(k) ⩾

2d−4∑
k=0

hI(k).

Таким образом, имеем #Sing(X) ⩾ (2d− 14) + 2(d− 2)(d− 1).
При d = 6 правая часть этого неравенства равна 38. Для доказательства
Леммы 2 необходимо исключить наборы значений (hI(0), . . . , hI(2d− 4)),
которые в сумме дают 38, 39 и 40. С учётом оценок из Таблицы получаем 6
вариантов, которые не реализуются:

(i) = (1, 3, 6, 6, 6, 6, 6, 3, 1), (ii) = (1, 4, 6, 6, 6, 6, 6, 4, 1),

(iii) = (1, 3, 6, 7, 6, 7, 6, 3, 1), (iv) = (1, 3, 7, 6, 6, 6, 7, 3, 1),

(v) = (1, 3, 6, 6, 7, 6, 6, 3, 1), (vi) = (1, 3, 6, 6, 8, 6, 6, 3, 1).
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Generalized semi-characteristic and R-restricted cobordism

Lavrukhin Viktor

August 2025

1 The generalized semi-characteristic of a bounding (B, f)-manifold
Define the subgroup of relations on Stiefel–Whitney numbers of closed manifolds Rn+1 to be the subgroup of

Hn+1(BOn+1) given by
Rn+1 =

⋂
Z

ker(τ∗Z : Hn+1(BOn+1) → Hn+1(Z)),

where the intersection is taken over all closed (n+ 1)-dimensional manifolds Z ⊂ Rq.
For an arbitrary relation R ∈ Rn+1 consider its inverse image i∗(R) ∈ Hn+1(BOn) and its classifying map

c : BOn → K(Z/2, n+ 1). Let B be the homotopy fiber of the map c. Then there is a homotopy fibration sequence

K(Z/2, n+ 1) → B
f−→ BOn

c−→ K(Z/2, n+ 1).

The main objects of our interest will be closed n-dimesional (B, f)-manifolds with B and f as above.
Let (X, gX) be a (B, f)-manifold with X being bounding. Choose a null-cobordism Y for X. Then we have the

commutative diagram
B

X Y

BOn BOn+1.

f

gX

in

τX τY

i

Consider the morphism of pairs (gX , τY ) : (X
in−→ Y ) → (B

i◦f−−→ BOn+1).

Definition 1. For a bounding (B, f)-manifold (X, gX), the generalized semi-characteristic is given by

κY
r (X, gX) := ⟨(gX , τY )

∗(r), [Y ]⟩ ∈ Z/2.

In essence κY
r does not depend on Y and r, so we write κR. Let us now consider examples of the generalized

semi-characteristic for specific relations.
If n is even, then there is a relation R = wn+1 ∈ Rn+1.

Proposition 2. Let n be an even integer. Consider a tangential structure (B, f) given by the relation R = wn+1 ∈
Rn+1. Then for every bounding (B, f)-manifold (X, gX) there is an equality

κwn+1(X, gX) =
χ(X)

2
mod 2.

For a closed manifold X of dimension n, there is the Kervaire semi-characteristic

κ(X) :=
dimH∗(X)

2
mod 2.

The following theorem shows that this invariant generalizes our invariant κR built from the relation R above.

Theorem 3. Let n = 2k−1 be an odd integer. Consider the pair (B, f) given by the relation R = wn+1+v2k ∈ Rn+1.
Then for every bounding manifold X there exists some (B, f)-structure gX on it such that there is an equality
κR(X, gX) = κ(X).

1



2 Cobordism group ΩR
n

Fix the relation R ∈ Rn+1 and consider its classifying map BOn+1
c1−→ K(Z/2, n+ 1). Let B1 be the homotopy

fiber of c1 and f1 : B1 → BOn+1 be a canonical map.
Consider the homotopy pullback square

B B1

BOn BOn+1.

j

f

⌟
f1

i

Definition 4. Let ΩR
n be an abelian group of (B1, f1)-cobordism classes of (B, f)-manifolds. For a (B, f)-manifold

(X, gX) denote its class as [X, gX ]R.

Consider a natural forgetting homomorphism U : ΩR
n → ΩO

n given by U([X, gX ]R) = [X]O. By Remark ??, this
homomorphism is surjective. The next lemma effectively describes its kernel.

Lemma 5. Let (X, gX) be a bounding (B, f)-manifold. Then [X, gX ]R = 0 if and only if κr(X, gX) = 0.

Corollary 6. There is a short exact sequence

0 → ker(U) → ΩR
n

U−→ ΩO
n → 0,

and κr : ker(U) → Z/2 is an isomorphism.

Example 7. Consider the relation w2
1 + w2 ∈ R2 and the corresponding group Ω

w2
1+w2

1 .

• According to [?], the obstruction for the existence of the Pin−-structure is exactly the class w2
1 + w2. So,

Ω
w2

1+w2

1
∼= ΩPin−

1 .

• Since ΩO
1 = 0, we have ker(U) = Ωw2

1+w2 . We conclude that κr : Ω
Pin−

1 → Z/2 is an isomorphism by the
previous corollary.

• Since w1 = v1, by Theorem 3, we have κr = κ, where κ denotes the Kervaire semi-characteristic.

Example 8. Consider the relation w4 + w2
2 ∈ R4 and the corresponding group Ω

w4+w2
2

3 .

• Consider space B̃ and map f̃ : B̃ → BOn as above. For 3-dimensional (B̃, f̃)-manifold (X, g̃X) the Wu class
v2(τX) vanishes. Since v2 = w2 + w2

1, according to [?] existence of (B̃, f̃)-structure is equivalent to existence
of Pin−-structure. Hence, Ωw4+w2

2
3 = ΩPin−

3 .

• Since ΩO
3
∼= 0, we have ker(U) = Ω

w4+w2
2

3 . As before, this implies that there is an isomorphism κr : Ω
Pin−

3 →
Z/2.

• Also, as in the previous example, κr(X, gX) = κ(X). In particular κ(X) is invariant under the (B1, f1)-
cobordism relation.

Example 9. If n is even, then there is a relation R = wn+1 ∈ Rn+1. For the bounding (X, gX) (B, f)-manifold
and null-cobordism Y for X there is a sequence of equalities

κwn+1
(X, gX) = χ(Y ) mod 2 =

(1
2
χ(X)

)
mod 2.

Consider (RPn, gRPn) with any (B, f)-structure gRPn : RPn → B. Since

κwn+1
(2[RP 2, gRPn ]R) = χ(RPn) mod 2 = 1

we have 2[RP 2, gRPn ]R ̸= 0 ∈ ΩR
n . Hence the exact sequence

0 ker(U) ΩR
n ΩO

n 0U

does not split and there is the homomorphism χ mod 4: ΩR
n → Z/4.

2



Глобальная размерность кольца эндоморфизмов
прямой суммы циклических групп

Милаков Матвей Андреевич
Санкт-Петербургский Государственный Университет

Постановка задачи

Проективной размерностью R-модуля M называется наименьшее n такое, что M имеет проективную резольвенту длины n. Обозначается как lpd(M).
Если конечной проективной резольвенты нет, длина полагается равной ∞.

Левой глобальной размерностью кольца R называют супремум проективных размерностей всех левых R-модулей, обозначается lDim(R).

A – конечно порождённая абелева группа, R = EndZ(A). Чему равна глобальная размерность R?

Результат B.L. Osofsky, 1970

Кольцо эндоморфизмов группы
⊕∞

i=1 Z/pZ, где p – некоторое простое число, имеет глобальную размерность k + 1 тогда и только тогда, когда 2ℵ0 = ℵk.
Если же 2ℵ0 > ℵω , то любое кольцо эндоморфизмов бесконечной прямой суммы циклических групп будет иметь бесконечную глобальную размерность.
То есть, случай бесконечной прямой суммы зависит от континуум-гипотезы

Конечный p-случай, фильтрация

A – конечная абелева p-группа, p – некоторое простое число. Имеется разложение

A =

n⊕
i=1

Ai,

где Ai – сумма циклических подгрупп порядка pmi .

m1 > m2 > ... > mn > mn+1 = 0 – длины прямых циклических слагаемых, встречающихся в A.

Введём обозначение A(k) = {a ∈ A | ord(a) ⩽ pk}.

A(k) – R-подмодуль в A.

A = A(m1) > A(m1−1) > · · · > A(1) > A(0) = 0 – строго убывающая фильтрация R-модулей

Если для некоторого i ∈ {1, . . . , n} выполнено mi − mi+1 > 1, то глобальная размерность R окажется равной бесконечности. Данное явление назовём
наличием пробела/скачка в ряду m1 > · · · > mn+1 = 0 длин примарных циклических слагаемых. Этот феномен и оказывается ключевым в
классификации глобальных размерностей колец эндоморфизмов конечно порождённых групп.

Утверждение 1: Проективность членов фильтрации

A(mi) проективны для каждого i

Если же некоторого i ∈ {1, . . . , n} верно mi+1 < k < mi, то модуль A(k) не проективен.Более того, в этом случае lpd(A(k)) = ∞.

Пример бесконечной размерности кольца эндоморфизмов

A = Z / pmZ, где m > 1. Имеется бесконечная 2-периодичная проективная резольвента:

· · · → Z/
p
mZ

·p−−→ Z/
p
mZ

·pm−1

−−−→ Z/
p
mZ ↠ Z/

pZ → 0,

сизигии которой не проективны.

Радикал Джекобсона

Радикалом Джекобсона R называется двусторонний идеал

J(R) = {r ∈ R |rM = 0 для всех простых модулей M}.

Для левого артинового кольца R верно
lDim(R) = lpdR

(
R
/
J(R)

)
.

Все простые левые модули над R имеют вид A(mi) /Bi для единственного максимального подмодуля Bi ⩽ A(mi). В случае отсуствия пробелов в ряде
длин есть проективная резольвента

0 → A(mi) → A(mi−1) ⊕ A(mi+1) → A(mi) → A(mi)
/
Bi

→ 0.

Более того,

J(R) ∼=
n⊕

i=1

Bi,
R
/
J(R)

∼=
n⊕

i=1

(
A(mi)

/
Bi

)
, lDim(R) = max

1⩽i⩽n
lpd

(
A(mi)

/
Bi

)
.

Значит, lpd
(
A(mi) /Bi

)
⩽ 2. Можно показать, что Bi не проективны, а значит проективная размерность A(mi) /Bi в точности 2.
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Глобальная размерность кольца эндоморфизмов
прямой суммы циклических групп

Милаков Матвей Андреевич
Санкт-Петербургский Государственный Университет

Конечный случай

Пусть A – конечная абелева группа, {pi}n
i=1 – набор таких простых чисел, что существует разложение

A =

n⊕
i=1

Ai,

где Ai – конечная абелева pi-группа. R = EndZ(A) является прямой суммой колец Ri = EndZ(Ai).
mj

1 > · · · > mj
n > mj

nj+1 = 0 – длины циклических прямых слагаемых, встречающихся в Aj . Тогда имеется следующая альтернатива:

Если хоть для одного j в ряду pj -длин есть пробел, то lDim(R) = ∞.

Если пробелов нет, притом maxj(nj) > 1, то lDim(R) = 2.

Если nj = 1 и mj
1 = 1 для каждого j, то lDim(R) = 0.

Конечно порожденный случай

A – конечно порождённая группа бесконечного порядка. Cуществует разложение A = T ⊕ F, где T – конечная абелева группа, F ∼= Zn – свободная
абелева группа конечного ранга, n ⩾ 1. R = EndZ(A) записывается как кольцо верхнетреугольных матриц:

R =

(
EndZ(T ) HomZ(F, T )

0 EndZ(F )

)
.

Введём обозначения для ортогональной пары проекторов

eT =

(
1 0
0 0

)
, eF =

(
0 0
0 1

)
.

RT = EndZ(T ) изоморфно кольцу eTReT = ReT .
Имеем кольцевой гомоморфизм

ϕ : R → R
T
, r 7→ reT .

Гомоморфизм ϕ задаёт функтор
Φ : RT Mod → RMod.

Φ является полным вложением RT Mod в RMod, его существенный образ – это все R-модули, аннулируемые eF .
Функтор Φ допускает правый сопряженный Ψ

Ψ : RMod → RT Mod,

M 7→ eTM, f 7→ f |eT M .

Более того, они точны и переводят проективные объекты в проективные, значит, сохраняют проективную размерность.

Формула для глобальной размерности

R – некоторое кольцо, {ei}n
i=1 – конечный полный набор ортогональных идемпотентов. Тогда

lDim(R) = sup{lpd (Rei / J) | J − подмодуль Rei, i = 1, . . . n}. Из этого равенства следует формула для lDim(R):

max
(
lDim(R

T
), sup

{
lpd

(
A
/
B

)
| B − R-подмодуль в A

})
.

Утверждение 2: Связь с глобальной размерностью кольца эндоморфизмов подгруппы кручения

Пусть A – конечно порождённая абелева группа бесконечного порядка, T – её подгруппа кручения. Если T ̸= 0, имеем равенство:

lDim(EndZ(A)) = max(lDim(EndZ(T )), 2).

Теорема 3: Глобальная размерность колец эндоморфизмов конечно порожденных абелевых групп

Пусть A – конечно порожденная абелева группа, для которой имеется разложение

A = F ⊕
k⊕

i=1

Tpi
,

где F ∼= Zn, {pi}k
i=1 – попарно различные простые, Tpi

– конечные абелевы pi-группы.

Если в ряду pi-длин есть скачок, то lDim(EndZ(A)) = ∞
Если F = 0, а T – прямая сумма простых абелевых групп, то lDim(EndZ(A)) = 0.

Если F ̸= 0 и T = 0, то lDim(EndZ(A)) = 1.

Во всех оставшихся случаях lDim(EndZ(A)) = 2.
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Local coe�cients for genuine equivariant cohomology

ARTEM PRIHODKO
Joint work in progress with Nikolay Konovalov and Ivan Perunov

Let X be a topological space equipped with an action of a topological group G. For an abelian group A one
can associate a homotopy theoretic invariant of G ↷ X, the so called Borel equivariant cohomology H∗

G(X,A).
More generally, for a generalized cohomology theory A ∈ Sp one can de�ne

H∗
G(X,A) := A∗(XhG),

where XhG ≃ (X × EG)/G denotes the homotopy quotient (with real coe�cients this can be computed using the
equivariant de Rham complex, but we would like to move in another direction). It is well-known that if G is a
compact Lie group one can do better (partially, since XhG usually is an in�nite CW complex). E.g. Atiyah and
Segal studied an association

G ↷ X � // KU0
G(X) := K0(VectG(X)),

where K0 denotes the Grothendiek group completion functor and VectG(X) denotes the groupoid of G-equivariant
complex vector bundles on X. The relation of KU0

G(X) with the more naive Borel-equivariant version H0
G(X,KU)

is explained in the following celebrated result.

Theorem 1 (Atiyah�Segal completion theorem). For X there is a natural ring homomorphism

KU0
G(X) // H0

G(X,KU)

which identi�es the target with the completion of the source in the augmentation ideal if X is a �nite G-CW complex.

One can extend KU0
G to the Z-graded functor KU∗

G which turns out to be an example of the so-called genuine
equivariant cohomology theory. Like the usual category of spectra Sp serves as a well behaved home to study
generalized cohomology theories the genuine G-equivariant stable category SpG developed and studied by May
and many others is considered as a correct setting to study generalized genuine equivariant cohomology theories
like KU∗

G.

Geometry. This was a homotopy theoretic story. Recall that in geometry outside of the smooth compact case the
ordinary cohomology is ill-behaved and one usually replaces it with the Borel�Moore or compactly supported

cohomology of H∗
c (X,A) of X or intersection cohomology. Now, arguably the most robust de�nition of the

Boreel�Moore homology is via the category of sheaves Shv(X,A) as the pushforward with compact support functor
(!-pushforward). The question arises:

Question 2. ForX equipped with an action of a compact Lie group G is there a weel behaved theory of G-equivariant
sheaves categorifying equivariant cohomology similarly to how the ordinary category of sheaves categori�es singular
cohomology?

It turns out that the answer for the naive Borel equivariant cohomology (possibly with coe�cients in a generalized
cohomolopgy theory) is positive and goes by the name of the Bernstein�Lunts equivariant category. The
original construction is di�erent, but with the advances in higher category theory of the last few decades it can
be de�ned simply as a category of sheaves on the topological quotient stack [X/G] (a la Drinfeld�Gaitsgory�
Rozenblum). Surprisingly, for genuine equivariant cohomology the question wasn't considerdd before even in the
case of locally constant coe�cients. In fact, even a de�nition of Borel�Moore (co)homology is not available in the
genuine case.

Our contribution to the �eld is summarized below.

Theorem 3. Let X be a topological space equipped with an action of a compact Lie group G and let A be an
E∞-ring spectrum in SpG. Then one can assign a category Shvgen([X/G], A) of genuine equivariant sheaves

on X with the following properties:

(1) The assignment is functorial in X in the sense that there are ∗- pullback and pushforward functors.



(2) There are proper pushforward and extraordinary pullback functors. Proper base change holds.

(3) For smooth G-manifolds Poincaré�Verdier duality (comparison of ∗- and !-pullbacks) holds.

(4) For X locally G-equivariantly contractible the cohomology of the structure sheaf recover genuine equivariant
cohomolopgy of X.

Remark 4. In fact, as notation suggest, by construction Shvgen([X/G], A) depends only on the underlying quotient
stack [X/G]. This encodes various change of group comptbilities, i.g. that genuine sheaves on X with free action
of G identify with the ordinary sheaves on the quotient.

Example 5. For X = ∗ the corresponding category identi�es naturally with ModA(Sp
G).

The application we have in mind requires non-locally constant coe�cients (e.g. a theory of genuine Borel�
Moore (co)homology), but we also construct a homotopy theoretic invariant category LocSysgen(X//G,A) of gen-
uine equivariant local systems. For X locally contractible this category identi�es with the full subcategory of
Shvgen([X/G], A) spanned by locally constant objects.

Complex oriented case. As a part of his broad project of understanding elliptic cohomology Lurie developed
in the complex oriented case for �nite G a theory of tempered cohomology and tempered local systems

LocSystemp, which largely motivated us during the earlier stage of the project. The idea roughly is to force
Theorem 1 to hold by de�nition. Our last main construction-result is a generalization of this theory to arbitrary
compact Lie groups and non-locally constant coe�cients.

Theorem 6. For X a topological space equipped with an action of a compact Lie group G and an oriented abelian
group spectral stack A (in the sense of Lurie) there is a category Shvtemp([X/G], A) which category�es A-tempered
cohomology similarly to how Shvgen catego�es genuine equivariant cohomology. Moreover, Shvtemp is an idempotent
monoidal localization of Shvgen, so that it admits six functors and the Verdier duality holds.

Remark 7. As in the genuine setting we construct a homotopy theoretic version LocSystemp(X//G,A). In the case
of �nite G this category coincides with the one introduced by Lurie.

Example 8. For G = U(1) there is a natural equivalence

LocSystemp(∗//U(1), A) ≃ QCoh(A).

Finally, we summarize various construction and categories mentioned above in the following table. Hopefully,
this can be of some use.

Constant coe�cients Locally constant
coe�cients

General local coe�cients

Non equivariant Generalized cohomology
A∗

LocSys(X,A) Shv(X,A)

Borel-equivariant Borel construction
H∗

G(X,A)
LocSys(XhG, A) Shv([X/G], A)

Genuine equivariant Genuine equiv. coh.
A∗

G(X)
LocSysgen(X,A) Shvgen([X/G], A)

Gen. equiv. with
complex oriented coe�s.

Tempered cohomology
A∗

G(X)
LocSystemp(X,A) Shvtemp([X/G], A)



Finite subgroups of automorphism groups
of non-trivial Severi–Brauer varieties

Alexandra Sonina — Higher School of Economics, Laboratory of Algebraic Geometry (Moscow)

Severi–Brauer varieties

Definition
An algebraic variety X of dimension n over a field k is called a Severi–Brauer variety
if it becomes isomorphic to Pn

k̄
after the extension of scalars to the algebraic clo-

sure k̄ of k.

Definition
A Severi–Brauer variety is non-trivial if it is not isomorphic to Pn

k over the base
field k.

Theorem [3].
A Severi–Brauer variety over k is trivial if and only if it has a k-point.

{
Severi–Brauer varieties

of dimension n over k

}
1:1←→

{
central simple algebras

of degree n over k

}

Theorem, [1] F. Châtelet.
Let X be a Severi–Brauer variety over a field k corresponding to a central simple
algebra A. Then Aut(X ) ∼= A∗(k)/k∗.

Balanced product

Notation
Let μn be a cyclic group of order n.

Let n be a positive integer and

n =
k∏
i=1

prii ,

where pi are pairwise different prime numbers. One has canonical isomorphism

μ∗
n
∼=

k∏
i=1

μ∗
n(pi),

where μ∗
n(pi)

∼= μ∗
p
ri
i
.

Definition
Let q be a prime number. Suppose that n is divisible only by primes pi ≡ 1(mod q)
and let χ : μq → μ∗

n be a homomorphism. We say that χ is balanced if its
composition with each of the projections μ∗

n → μn(pi)
∗ is an embedding. We say

that a semidirect product G of μn and μq corresponding to the homomorphism χ
is balanced if χ is balanced.

The problem and previous results

In the classical article [2] I. Dolgachev and V. Iskovskikh classified finite subgroups
of Bir(P2

C). Since Severi–Brauer variety is a skew form of projective space, one
wants to answer this question:

“What finite groups can appear as subgroups of these automorphism groups?”

This question was developed by C. Shramov and A. Savelyeva. They showed the
following theorems:

Theorem 1.

1. [6, A. Savelyeva] Let X be a non-trivial Severi–Brauer variety of
dimension q − 1 over a field K, where q ≥ 3 is prime and q �= char(K).
Let G be a finite subgroup of Aut(X ), then there exists a positive integer n
such that G is isomorphic to a subgroup of μq × (μn � μq), where the
semidirect product is balanced.

2. [4, C. Shramov] For any n such that the semidirect product μn � μ3 is
balanced there exists a field L ⊂ Q and a non-trivial Severi–Brauer surface S
over L, such that μ3 × (μn � μ3) is a subgroup of Aut(S).

3. [5, C. Shramov] Let S be a non-trivial Severi–Brauer surface over field of
characteristic zero. Then any finite subgroup of Bir(S) is conjugate either to
a subgroup of Aut(S), or to a subgroup of μ3

3.

Main results

It was proven that there is a universal example of non-trivial Severi–Brauer variety,
whose group of automorphism contains all possible finite subgroups and, moreover,
in the case of dimension 2 its group of birational automorphism contains μ3

3.

Theorem 2, S.

Let q ≥ 3 be a prime number. There exists a field k ⊂ Q and a non-trivial Severi–
Brauer variety X of dimension q − 1 over L = k(t), where t is a transcendental
variable, such that Aut(X ) contains all groups μq×(μn�μq), where the semidirect
product is balanced. Moreover, if q = 3 then μ3

3 ⊂ Bir(X ).

Additionally, the case where the base field has positive characteristic was developed.

Notations
Denote by ordp(l) the minimum integer r such that l r − 1 is divisible by p.
Let vq(l) be the maximum r such that l is divisible by qr .

It was proven that in this case not all of the finite group described in Theorem 1
can be actually realized.

Theorem 3, S.
Let l be any prime number. Let K be a field of characteristic l . Let X be a non-
trivial Severi–Brauer variety of dimension q−1 over a field K, where q ≥ 3 is prime
and l �= q. Then there exists a positive integer k such that for any finite subgroup G
of Aut(X ) there exists a positive integer n =

∏m
i=1 p

ri
i such that vq(ordpi(l)) = k

for 1 ≤ i ≤ m and G is isomorphic to a subgroup of μq × (μn � μq), where the
semidirect product is balanced.

The last theorem states that for any integer k ≥ 1 there is a universal example of
non-trivial Severi–Brauer variety, whose group of automorphism contains all possible
finite subgroups with respect to k .

Theorem 4, S.
Let l be any prime number. Let q ≥ 3 be a prime number and l �= q, let k
be a positive integer. Then there exists a field k ⊂ Fl and a non-trivial Severi–
Brauer variety X of dimension q − 1 over K = k(t) such that Aut(X ) contains
all groups μq × (μn � μq), such that the following conditions on those groups are
met:

1. One has n =
∏m

i=1 p
ri
i , where pi are pairwise different prime numbers such

that vq(ordpi(l)) = k for 1 ≤ i ≤ m;

2. The semidirect product is balanced.

Questions

We only considered the case where the degree of a central simple algebra and
characteristic of the base field are not equal.

Question
Let X be a non-trivial Severi–Brauer variety over base field K. What can one tell
about the finite subgroups of Aut(X ) if char(k) = dim(X ) + 1?

In Theorems 2 and 4 one has tr. degK = 1 over Q in the first case, and over Fl in
the second case, where K is a base field. In positive characteristic there is no
non-trivial Severi–Brauer variety over algebraic field, so tr. degK ≥ 1 in this case.
So there is a following question:

Question
Are there any universal examples of non-trivial Severi–Brauer variety over a field
K, such that K ⊂ Q?
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Нисневич-локальные эквивалентности для локальных открытых пар
УРАЗБАЕВ А. А.

Рассмотрим локальные гладкие открытые пары над произвольной схемой B, их классифика-
цию с точностью до Нисневич-локальных эквивалентностей и мотивных эвиваленостей, и группы 
гоморфизмов в категории DM(k), где k – произвольное поле. А именно

• доказаны Нисневич-локальные эквивалентности для локальных открытых пар над произ-
вольной схемой B, и исследованы некоторые необходимые условия эквивалентности пар вида
X/(X − x), где x – замкнутая точка гладкой схемы X над нётеровой отделимой схемой B,

• вычислены группы гомоморфизмов HomDM(B)(U, (A1
k − z1)[l]) и HomDM(B)((A1

k − z0), (A1
k −

z1)[l]), U ∈ Smk, z0 ∈ A1
k, z1 ∈ A1

k, l ∈ Z.

Для замкнутого вложния гладких B-схем Z → X хорошо известна Нисневич-локальная экви-
валентность

(U,U − Z) ≃nis (Z × AcodimU Z , Z × (AcodimU Z − 0)). (0.1)

Получено обобщение указанного факта на произвольные схемы Z.

Теорема 0.2. Пусть X0, X1 ∈ SmB для нетеровой отделимой схемы B, x0 ∈ X0, x1 ∈ X1,
U0 = SpecOX0,x0 и U1 = SpecOX1,x1 - локальный схемы, Z0 и Z1 замкнутые подсхемы U0 и U1.
Предположим, что

dimB U0 = dimB U1

и
(Z0)red ≃ (Z1)red.

тогда есть Нисневич локальная эквивалентность открытых пар над B

(U0, U0 − Z0) ≃nis (U1, U1 − Z1); (0.3)

в терминах категории SchB эквивалентность (0.3) означает наличие следующей коммутативной
диаграммы

U0 Γ
étaleoo étale // U1

Z0

?�

OO

Θ
∼=oo

?�

OO

∼= // Z1

?�

OO

в которой вертикальные стрелки – замкнутые вложения заданные по условию, верхние горизон-
тальные стрелки являются этальными, нижние горизонтальные стрелки являются изоморфиз-
мами, и оба коммутативных квадрата являются расслоенными, т.е.

Γ×U0
Z0

∼= Θ ∼= Γ×U1
Z1.

Замечание 1. Для всякой пары схем (U,U − Z) ∈ SchpairB , без ограничения общности схему Z допу-
стимо считать приведённой поскольку имеет место равенство U − Z = U − Zred открытых подсхем
U .

Эквивалентности про-объектов X/(X −Z) ≃ X ′/(X ′ −Z ′) в стабильной мотивной гомотопиче-
ской категории SH(B) и категории мотивов Воеводского DM(B) ранее были доказаны с использова-
нием шести функторов Гротендика, а именно функторов f! по отношению к отделимым морфизмам
конечного типа над B построенных в [Cisinski-Deglise-Triangmixedmotives]. Приведённая выше
теорема влечёт эквивалентности в категории пучков с отмеченной точкой, и как следствие в неста-
бильной мотивной гомотопической категории Мореля-Воеводского с отмеченной точкой. Отметим,
что эквивалентность с отмеченной точкой переходить в эквивалентность без отмеченной точки по-
средством забывающего функтора. Следует также отметить, что приведённое ниже утверждение
имеет более простое доказательство, основанное на (0.1), когда поля вычетов B совершенны.

Следствие 0.4. Пусть X0, X1 – гладкие схемы над B, и x0, x1 – замкнутые точки, X0 ̸= x0,
X1 ̸= x1. Предположим, что dimx0 X0 = dimx1 X1, и поля вычетов в точке x0 и x1 – изоморфны.
Тогда существует локальная эквивалентность пучков Нисневича с отмеченной точкой

X0/(X0 − x0) ≃nis X1/(X1 − x1),
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и как следствие мотивная эквивалентность мотивных пространств

X0/(X0 − x0) ≃mot X1/(X1 − x1) ∈ H•(B)

в мотивной гомотопической категории Мореля-Воеводского с отмеченной точкой H•(B) [MV].

Замечание 2. Вместо символа X/(X − Z) ∈ H•(B) следует рассматривать X+/(X+ − Z), когда
X − Z не плотно в X.

Коль скоро мы говорим о классификации, то следует обсудить и импликацию в обратную сто-
рону, а именно доказательство не изоморфизмов, т.е. утверждения в той или иной степени обратные
к теореме 0.2 и следствию 0.4.

Утверждение 0.5. Пусть B – это нетерова отделимая схема.

Предположим, что есть изоморфизм X0/(X0 − x0) ≃ X1/(X1 − x1) в H•(B), для каких-то
X0, X1 ∈ SmB и замкнутых точек x0 ∈ X0, x1 ∈ X1, тогда

dimx0

B X0 = dimx1

B X1 ∈ Z,

и
p0(x0) = p1(x1) ∈ B, sdegK0

L0 = sdegK1
L1, (0.6)

где p0 : X0 → B, p1 : X1 → B – структурные морфизмы, K0 и L0 – поля вычетов в p0(x0) и x0,
тоже самое для K1 и L1.

Вторая часть исследования обобщает результаты о группах морфизмов, которые для совер-
шенных базовых полей являются следствиями результатов [MVW].

Теорема 0.7. Пусть C ∈ Smk такая, что dimk C = 1, и D – замкнутая приведенная нольмерная
подсхема.

Тогда имеет место квазиизоморфизм комплексов пучков Зарисского на Smk

Cor(−×k ∆•
k, C/(C −D)))

∼=−→ k[−×k D]×, (0.8)

где правая часть рассматривается как комплекс сосредоточенный в степени ноль. Для всякой
U ∈ Smk имеет место естественный изоморфизм

HomDM(k)(U,C/(C −D)[l]) ≃


0, l ̸= −1, 0,

O(U ×D)×, l = −1

Pic(U ×D), l = 0.

(0.9)

Теорема 0.10. Пусть V0 = A1
k − z0, V1 = A1

k − z1 для произвольных замкнутых точек z0 и z1.
Тогда имеет место изоморфизм групп

HomDM(k)(V0/ptk, V1/ptk)
∼= Cork(z0, z1), (0.11)

и HomDM(k)(V0/ptk, V1/ptk[l]) = 0 для l ̸= 0.
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Ïðÿìîóãîëüíûå äèàãðàììû ñëîåíèé

È. À. Äûííèêîâ, Ì. Ì. ×åðíàâñêèõ

Îïðåäåëåíèå 1. Ïà÷êîé ïðÿìîóãîëüíèêîâ

íàçûâàåòñÿ óïîðÿäî÷åííîå ñåìåéñòâî ïðÿ-
ìîóãîëüíèêîâ âèäà r(t) = [θ1(t);θ2(t)] ×
[φ1(t);φ2(t)], ãäå íåïðåðûâíûå îòîáðàæå-
íèÿ θ1,θ2,φ1,φ2 èç [0; 1] â S1 îáëàäàþò ñëå-
äóþùèìè ñâîéñòâàìè:

(i) θ1 è φ2 ñòðîãî âîçðàñòàþò,

(ii) θ2 è φ1 ñòðîãî óáûâàþò,

(iii) äëÿ âñåõ t ∈ [0; 1] âûïîëíåíî θ1(t) ̸=
θ2(t), φ1(t) ̸= φ2(t).

Îïðåäåëåíèå 2. Ïóñòü R � ïðÿìîóãîëü-
íàÿ äèàãðàììà çàöåïëåíèÿ. Ïðÿìîóãîëüíîé
äèàãðàììîé ñëîåíèÿ â äîïîëíåíèè ê çàöåï-

ëåíèþ R̂ íàçûâàåòñÿ òàêîé êîíå÷íûé íàáîð
ïà÷åê {P1, . . . , Pk} ïðÿìîóãîëüíèêîâ, ÷òî:

1. ëþáûå äâå ïà÷êè Pi, Pj , i ̸= j, ïîïàðíî
ïî÷òè ñîâìåñòèìû (ñì. ðèñ.),

2. Äèàãðàììà Πmin(Ξ) ïîëó÷àåòñÿ èç äèà-
ãðàììû Πmax(Ξ) êîíå÷íîé ïîñëåäîâà-
òåëüíîñòüþ ïîëîæèòåëüíûõ ôëàéïîâ,
ñõëîïûâàíèé/âûäóâàíèé ïóçûðåé, ñ ïî-
ñëåäóþùèì äîáàâëåíèåì äèàãðàììû
òðóáêè âîêðóã çàöåïëåíèÿ R̂ âèäà Ωε(R)
äëÿ íåêîòîðîãî ε > 0, ãäå ÷åðåç
Πmin(Ξ) îáîçíà÷àåòñÿ íàáîð ïîñëåä-
íèõ ïðÿìîóãîëüíèêîâ â êàæäîé ïà÷-
êå {rmin(Pi)}i=1,...,k, à ÷åðåç Πmax(Ξ) �
íàáîð ïîñëåäíèõ ïðÿìîóãîëüíèêîâ êàæ-
äîé ïà÷êè {rmax(Pi)}i=1,...,k

Îïðåäåëåíèå 3. Êîîðèåíòèðîâàííîå ñëî-
åíèå F êîðàçìåðíîñòè 1 íàçûâàåòñÿ òó-

ãèì, åñëè ñóùåñòâóåò çàìêíóòàÿ òðàíñâåð-
ñàëü, ïåðåñåêàþùàÿ âñå ñëîè F .

Îïðåäåëåíèå 4. Êîìïàêòíûå ñëîè ñëîåíèÿ
èìåþò ãëóáèíó 0.
Ñëîé F ñëîåíèÿ F èìååò ãëóáèíó k, åñëè

F̄ \F åñòü îáúåäèíåíèå ñëî¼â < k è ñîäåðæèò
õîòÿ áû îäèí ñëîé ãëóáèíû k − 1.
Ñëîåíèå F íàçûâàåòñÿ ñëîåíèåì êîíå÷íîé

ãëóáèíû, åñëè âñå ñëîè èìåþò ãëóáèíó, ìåíü-
øóþ íåêîòîðîãî k ∈ N.

Òåîðåìà 1 (W. P. Thurston). Ïóñòü L ⊂ S3
� çàöåïëåíèå, à F � åãî ïîâåðõíîñòü Çåé-

ôåðòà. Åñëè ñóùåñòâóåò òóãîå ñëîåíèå íà

M = S3 \N(L) ñ êîìïàêòíûì ñëîåì F ∩M ,

òî ïîâåðõíîñòü F èìååò íàèìåíüøèé âîç-

ìîæíûé ðîä.

Òåîðåìà 2 (1976; D. Gabai, 1983). Ïóñòü
L ⊂ S3 � ïðîèçâîëüíîå íåðàçâîäèìîå çà-

öåïëåíèå, à F � åãî ïîâåðõíîñòü Çåéôåðòà

íàèìåíüøåãî ðîäà. Òîãäà ñóùåñòâóåò òóãîå

ñëîåíèå êîíå÷íîé ãëóáèíû íà M = S3 \N(L)
ñ êîìïàêòíûì ñëîåì F ∩M .

Òåîðåìà 3 (È. À. Äûííèêîâ, Ì. ×.). Ëþ-
áîå òóãîå ñëîåíèå êîíå÷íîé ãëóáèíû â äîïîë-

íåíèè ê íåðàçâîäèìîìó çàöåïëåíèþ ìîæåò

áûòü ïðåäñòàâëåíî ïðÿìîóãîëüíîé äèàãðàì-

ìîé ñëîåíèÿ.
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Ðèñ. 1: Ñîâìåñòèìûå ïà÷êè ïðÿìîóãîëüíè-
êîâ

Ðèñ. 2: Äèàãðàììà ñëîåíèÿ â äîïîëíåíèè ê
óçëó 52 è äèàãðàììà Πmin

Ðèñ. 3: Îáðàç ïà÷êè ïðÿìîóãîëüíèêîâ â S3

Ðèñ. 4: Äèàãðàììà Πmax
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